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Motivation
Describing high-temperature plasmas requires inclusion of several nonlinear coupled physics
• Ion kinetics - for each isotope species present in the plasma
• Electron kinetics
• Thermal radiative transfer (TRT)
• Electromagnetic description
• Nuclear reactions (Fusion burn)

TRT is a key physics component in ICF
• Thermal x-ray radiation becomes the

dominant energy transfer mechanism in
hohlraum

• Driver of capsule implosion
• Radiative energy loss
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Scope of this project

Simulating plasmas in ICF hohlraums.

Our project aims to solve
• Kinetic ions (particles)
• Fluid electrons
• Energetic electrons
• Electromagnetics
• Kinetic radiation (MG DP solver)
• Laser-plasma interactions

Coupling of the different physics is done
in a nonlinear LO system
• Moment (fluid) equations for plasma
• Gray radiation diffusion
• Consistency terms enforce HO

solution
• Concept has been tested in iFP

This presentation describes work done in iFP, which is slightly different
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DR project equations - Overview
We try to solve a coupled system with these equations
(missing hot electrons, laser-plasma-interactions):

Ion Vlasov-Fokker-Planck: ∂t fα + u·∇x fα + qα
mα

E ·∇ufα =
∑
β

Cαβ

Radiation transport: 1
c ∂t I + Ωi∂i I + σt I − σeB = SΩ′→Ω,ν′→ν

Quasineutrality:
∑
α qαnα + qene = 0

Ambipolarity:
∑
α qαnαuα,i + qeneue,i = 0

Electron temperature ∂t
3
2nekBTe + ∂iue,i

[
3
2nekBTe + Pe

]
+ ∂iQe,i

−qeneue,i Ei −
∑
α Weα − Sre = 0

Ohm’s law: Ei =
∂i Pe+

∑
α

Fαe,i − Srp,i
qene
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Vlasov-Fokker-Planck equation

Electrostatic kinetic plasma equation with Coulomb collisions

∂t fα + u·∇x fα + qα
mα

E ·∇ufα =
∑
β

Cαβ

where
• fα (x, u, t) velocity distribution function for species α
• E (x) electric field
• qα species charge
• mα species mass
• Cαβ (fα, fβ) Fokker-Planck collision operator with species β (Rosenbluth et al., 1957)
• ∇x gradient operator in physical space
• ∇u gradient operator in velocity space
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Thermal Radiative Transfer Equation

Thermal radiative transfer (TRT) with physical scattering can be described by the
following equation

1
c ∂t I + Ω·∇x I + σt I−σeB =

∫ ∞
0

∫
4π
σs (Ω′ → Ω, ν′ → ν) I (Ω′, ν′) dΩ′ dν′

where
• I (x,Ω, ν, t) Radiation intensity in direction Ω and frequency ν
• B (ν,Te) Planck function (nonlinear emission spectrum)
• σ (x, ρ, ν,Te) Opacity (total, emission, and scattering)

Nonlinearly coupled to electron physics by ρ and Te. The frequency-integrated
emission source is ∝ T 4

e
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Common Approach for Radiation-Plasma coupling

This system is difficult to solve
• Stiff coupling between radiation and material

temperature (∝ T 4)
• High dimensionality of the transport equation

Common aproaches to solve this
• Linearization of emission-source
• Operator-split temporal update
• Monte-Carlo methods for Boltzmann integral

ICF Hohlraum. Source: LLNL
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State of the Art in Plasma-Radiation coupling

Current radiation-hydrodynamics codes use a fluid model for plasma
• Plasma described by bulk quantities (moments)
• Assume the plasma is sufficiently collisional (Small Knudsen number)
• Heat flux limiter required to avoid nonphysical behavior

This assumptions are violated in ICF plasmas
• Free streaming of ions and electrons
• Counter-flows
• Non-maxwellian velocity distribution

We need to understand when and where these assumptions are not valid, and the
effects
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Multi-physics coupling through low-order system

Nonlinear LO solver
Multi-fluid +

Gray Radiation Diffusion

Radiation transport

Ion Kinetics

Electron solver
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Coupling scheme through LO system

To efficiently couple these equations, we employ a system
of low-order (LO) equations
• LO system is tightly coupled

– Moments of the kinetic equations
– Implicit time-discretization
– Solved with non-linear solver (e.g. Newton-Krylov)

• LO-equations are corrected by high-order (HO) solution
– Example of existing methods: Variable Eddington tensor

formulation/ quasi-diffusion
• HO-solvers are (mostly) independent from each other

– HO-solvers use LO-solution for coupled parameters (e.g.,
Te for emission source, ue for motion correction)

Kinetic electrons have been implemented in a differ-
ent branch of the iFP code
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LO equations - Ions (Moments of VFP)
Conservation of mass (continuity)

∂tρα + ∂iραuα,i + γV,ρ,α − γFP,ρ,α = 0,
Conservation of momentum

∂tpα,i + ∂jpα,iuα,j + ∂iPα − qαnαEi +
∑
β

Fαβ,i + Fαe,i + γV,p,α,i − γFP,p,α,i = 0,

Conservation of energy
∂tUα + ∂iuα,i [Uα + Pα]− qαnαuα,iEi +

∑
β

Wαβ + Weα + γV,U,α − γFP,U,α = 0.

where
• Mass density ρα = mαnα
• Bulk velocity uα,i (Tensor notation)
• Total energy Uα = 3/2nαkBTα + 1/2ραu2

α,i

• Friction terms Fαβ

• Energy exchange terms Wαβ

• Pressure Pα
• Consistency terms γV and γFP
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LO equations - Electrons (Hybrid)
The electron number density can be calculated using quasi-neutrality∑

α

qαnα + qene = 0,

and the electron velocity using ambipolarity∑
α

qαnαuα,i + qeneue,i = 0.

The electron temperature equation is coupled with radiation

∂t
3
2nekBTe + ∂iue,i

[3
2nekBTe + Pe

]
+ ∂iQe,i − qeneue,iEi −

∑
α

Weα − Sre = 0,

where
• Heat flux Qe,i • Radiation energy deposition Sre
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LO equations - Electric field (Ohm’s Law)

Using the electron momentum equation

∂tpe,i + ∂j [ue,jpe,i ] + ∂iPe − qeneEi +
∑
α

Fαe,i − Srp,i = 0,

and assuming me ≈ 0→ pe,i ≈ 0 to get Ohm’s law:

Ei = ∂iPe +
∑
α Fαe,i − Srp,i
qene

,

with Srp,i the radiation momentum deposition.

The DR will use a generalized version of this electric field including
electromagnetic effects, Andrei is working on a rigorous formulation
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LO equations - Radiation (Gray Diffusion)

Radiation energy conservation

∂tEr + ∂iFi + Sre = 0,

Radiation momentum conservation

1
c2∂tFi + ∂jPr ,ij + Srp,i = 0,

where
• Gray radiation energy density Er = 1

c

∫∞
0

∫
4π I dΩ dν

• Gray radiative flux Fi =
∫∞

0

∫
4π Ωi I dΩ dν

• Radiation pressure Pr,ij =
∫∞

0

∫
4π Ωi Ωj I dΩ dν
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Radiation - Plasma coupling

Radiation and plasma couple through energy and momentum exchange terms.

Energy
Sre = σacE0 − σeacT 4

e + σt
c ue,iF0,i ,

Momentum (second term negligible for non-relativistic regimes)

Srp,i '
σt
c F0,i +

��
���

���
���:≈ 0

ue,i
c2
(
σacE0 − σeacT 4

e
)

Isotropic scattering is hidden in the opacities: σt = σs + σa

Radiation is assumed to only interact with electrons. Coupling is dependent on ue
and Te
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Radiation - Material motion correction
Interaction of radiation with moving material require material motion corrections
• Using comoving frame
• Lorentz transformation of radiation quantities
• Emission and scattering (Thompson) are isotropic in comoving frame
• Becomes anisotropic in laboratory frame
Simplified material motion correction for non-relativistic velocities (Morel, 2006):

F0,i = Fi − ue,iEr − ue,jPr ,ij

E0 ' Er −
��

��
�*≈ 0

2ue,i
c2 F0,i

Pr ,ij = EijEr with Eij '
1
3δij (Eddington tensor)
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Radiation Diffusion Approximation
Neglecting the temporal term in the radiation momentum equation, and with the
non-relativistic material motion corrections, we get

Fi = − c
σt
∂jEr ,ijEr + ue,iEr + ue,jEijEr ,

and a simplified momentum deposition

Srp = −∂j [EijEr ] .

Cancellations
Several terms are required to cancel
• Stem from different terms and show up in different equations
• Discretization must match
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Radiation-Hydrodynamic asymptotic limit

The previous equations yield the rad-hydro formulation in the highly collisional limit
• Substitute radiation coupling terms and cancel
• The plasma fluid model reduces to Euler equations

Radiation diffusion equation simplifies to

∂tEr − ∂i
c
σt
∂i [EEr ] + ∂i [ue,i (1 + E) Er ] + σacE0 − σeacT 4

e − ue,i∂i [EEr ] = 0,

which gives with the chain-rule the CRASH equation (Holst et al., 2011)

∂tEr − ∂i
c
σt
∂i [EEr ] + ∂i [ue,iEr ] + EEr∂iue,i + σacE0 − σeacT 4

e = 0
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Verification M45 Radiative Shock

Planar Mach 45 shock problem (Lowrie and Edwards, 2008)
• Shock driven by radiation
• Self-similar solution
• Strongly collisional regime (iFP should reproduce rad-hydro)

Input is for rad-hydro, must be translated to plasma parameters. Special care is required
• It looks like a proton (Hydrogen) plasma (m ≈ 1)
• Rad-hydro input neglected electrons for heat capacity (error)
• To match both heat capacity (sum ions and electrons) and mass density, ion mass must

be doubled (m ≈ 2) (fix)
Special care must be taken for rad-hydro inputs.
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Radiative Shock - Results
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(b) Velocity

Results for the Mach 45 radiative shock problem at 50 ns compared to the reference solution.
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Radiative Shock - Results II
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(d) Temperature at shock peak

Results for the Mach 45 radiative shock problem at 50 ns compared to the reference solution.
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Conclusions

Implemented radiation-plasma coupling in the iFP LO solver
• Currently Gray radiation diffusion
• Verified with radiative Mach 45 shock
• Holds in the asymptotic limit

This work is the foundation to ground-breaking improvements
• Extension with HO solver (multi-group diffusion, transport)
• More sophisticated opacity models (tables, LTE, NLTE)

Radiation coupling lessons can be directly translated to DR project
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